博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Treemap and Treeset java 实现
阅读量:6305 次
发布时间:2019-06-22

本文共 7737 字,大约阅读时间需要 25 分钟。

引自:  (红黑树部分 详见这里)

对于 TreeMap 而言,它采用一种被称为“红黑树”的排序二叉树来保存 Map 中每个 Entry —— 每个 Entry 都被当成“红黑树”的一个节点对待。例如对于如下程序而言:

public class TreeMapTest  {     public static void main(String[] args)     {         TreeMap
map = new TreeMap
(); map.put("ccc" , 89.0); map.put("aaa" , 80.0); map.put("zzz" , 80.0); map.put("bbb" , 89.0); System.out.println(map); } }

当程序执行 map.put("ccc" , 89.0); 时,系统将直接把 "ccc"-89.0 这个 Entry 放入 Map 中,这个 Entry 就是该“红黑树”的根节点。接着程序执行 map.put("aaa" , 80.0); 时,程序会将 "aaa"-80.0 作为新节点添加到已有的红黑树中。

以后每向 TreeMap 中放入一个 key-value 对,系统都需要将该 Entry 当成一个新节点,添加成已有红黑树中,通过这种方式就可保证 TreeMap 中所有 key 总是由小到大地排列。例如我们输出上面程序,将看到如下结果(所有 key 由小到大地排列):

{aaa=80.0, bbb=89.0, ccc=89.0, zzz=80.0}

 

TreeMap 的添加节点

红黑树红黑树是一种自平衡排序二叉树,树中每个节点的值,都大于或等于在它的左子树中的所有节点的值,并且小于或等于在它的右子树中的所有节点的值,这确保红黑树运行时可以快速地在树中查找和定位的所需节点。

对于 TreeMap 而言,由于它底层采用一棵“红黑树”来保存集合中的 Entry,这意味这 TreeMap 添加元素、取出元素的性能都比 HashMap 低:当 TreeMap 添加元素时,需要通过循环找到新增 Entry 的插入位置,因此比较耗性能;当从 TreeMap 中取出元素时,需要通过循环才能找到合适的 Entry,也比较耗性能。但 TreeMap、TreeSet 比 HashMap、HashSet 的优势在于:TreeMap 中的所有 Entry 总是按 key 根据指定排序规则保持有序状态,TreeSet 中所有元素总是根据指定排序规则保持有序状态。

为了理解 TreeMap 的底层实现,必须先介绍排序二叉树和红黑树这两种数据结构。其中红黑树又是一种特殊的排序二叉树。

排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索。

排序二叉树要么是一棵空二叉树,要么是具有下列性质的二叉树:

  • 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  • 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
  • 它的左、右子树也分别为排序二叉树。

图 1 显示了一棵排序二叉树:

 

对排序二叉树,若按中序遍历就可以得到由小到大的有序序列。如图 1 所示二叉树,中序遍历得:

{2,3,4,8,9,9,10,13,15,18}

 

创建排序二叉树的步骤,也就是不断地向排序二叉树添加节点的过程,向排序二叉树添加节点的步骤如下:

  1. 以根节点当前节点开始搜索。
  2. 拿新节点的值和当前节点的值比较。
  3. 如果新节点的值更大,则以当前节点的右子节点作为新的当前节点;如果新节点的值更小,则以当前节点的左子节点作为新的当前节点。
  4. 重复 2、3 两个步骤,直到搜索到合适的叶子节点为止。
  5. 将新节点添加为第 4 步找到的叶子节点的子节点;如果新节点更大,则添加为右子节点;否则添加为左子节点。

掌握上面理论之后,下面我们来分析 TreeMap 添加节点(TreeMap 中使用 Entry 内部类代表节点)的实现,TreeMap 集合的 put(K key, V value) 方法实现了将 Entry 放入排序二叉树中,下面是该方法的源代码:

1,说一下super和extends这两个单词,super是父类,extends是继承父类,2,?extends E意思是:“?”继承E,就是说“?”指代的是继承E的类,那么就是说?代表的是E或E的子类3,?super E,意思就是说?是E或E的父类,4,构造函数TreeSet(Comparator
comparator)你可以先把泛型去掉进行理解,意思就是说 TreeSet(Comparator comparator)TreeSet()这个构造函数的参数是Comparator类型的变量 现在把泛型加入Comparator
comparator,其中规定的泛型就是说需要传递什么样的比较器, 那么需要传递什么样的比较器呢?
就是这种类型的!就是规定的E类或者E的父类

 

public V put(K key, V value)  {     // 先以 t 保存链表的 root 节点    Entry
t = root; // 如果 t==null,表明是一个空链表,即该 TreeMap 里没有任何 Entry if (t == null) { // 将新的 key-value 创建一个 Entry,并将该 Entry 作为 root root = new Entry
(key, value, null); // 设置该 Map 集合的 size 为 1,代表包含一个 Entry size = 1; // 记录修改次数为 1 modCount++; return null; } int cmp; Entry
parent; Comparator
cpr = comparator; // 如果比较器 cpr 不为 null,即表明采用定制排序 if (cpr != null) { do { // 使用 parent 上次循环后的 t 所引用的 Entry parent = t; // 拿新插入 key 和 t 的 key 进行比较 cmp = cpr.compare(key, t.key); // 如果新插入的 key 小于 t 的 key,t 等于 t 的左边节点 if (cmp < 0) t = t.left; // 如果新插入的 key 大于 t 的 key,t 等于 t 的右边节点 else if (cmp > 0) t = t.right; // 如果两个 key 相等,新的 value 覆盖原有的 value, // 并返回原有的 value else return t.setValue(value); } while (t != null); } else { if (key == null) throw new NullPointerException(); Comparable
k = (Comparable
) key; do { // 使用 parent 上次循环后的 t 所引用的 Entry parent = t; // 拿新插入 key 和 t 的 key 进行比较 cmp = k.compareTo(t.key); // 如果新插入的 key 小于 t 的 key,t 等于 t 的左边节点 if (cmp < 0) t = t.left; // 如果新插入的 key 大于 t 的 key,t 等于 t 的右边节点 else if (cmp > 0) t = t.right; // 如果两个 key 相等,新的 value 覆盖原有的 value, // 并返回原有的 value else return t.setValue(value); } while (t != null); } // 将新插入的节点作为 parent 节点的子节点 Entry
e = new Entry
(key, value, parent); // 如果新插入 key 小于 parent 的 key,则 e 作为 parent 的左子节点 if (cmp < 0) parent.left = e; // 如果新插入 key 小于 parent 的 key,则 e 作为 parent 的右子节点 else parent.right = e; // 修复红黑树 fixAfterInsertion(e); // ① size++; modCount++; return null; }

TreeMap 删除节点的方法由如下方法实现:

private void deleteEntry(Entry
p) { modCount++; size--; // 如果被删除节点的左子树、右子树都不为空 if (p.left != null && p.right != null) { // 用 p 节点的中序后继节点代替 p 节点 Entry
s = successor (p); p.key = s.key; p.value = s.value; p = s; } // 如果 p 节点的左节点存在,replacement 代表左节点;否则代表右节点。 Entry
replacement = (p.left != null ? p.left : p.right); if (replacement != null) { replacement.parent = p.parent; // 如果 p 没有父节点,则 replacemment 变成父节点 if (p.parent == null) root = replacement; // 如果 p 节点是其父节点的左子节点 else if (p == p.parent.left) p.parent.left = replacement; // 如果 p 节点是其父节点的右子节点 else p.parent.right = replacement; p.left = p.right = p.parent = null; // 修复红黑树 if (p.color == BLACK) fixAfterDeletion(replacement); // ① } // 如果 p 节点没有父节点 else if (p.parent == null) { root = null; } else { if (p.color == BLACK) // 修复红黑树 fixAfterDeletion(p); // ② if (p.parent != null) { // 如果 p 是其父节点的左子节点 if (p == p.parent.left) p.parent.left = null; // 如果 p 是其父节点的右子节点 else if (p == p.parent.right) p.parent.right = null; p.parent = null; } } }

 

最后用treemap来实现treeset

public class TreeSet
extends AbstractSet
implements NavigableSet
, Cloneable, java.io.Serializable { // 使用 NavigableMap 的 key 来保存 Set 集合的元素 private transient NavigableMap
m; // 使用一个 PRESENT 作为 Map 集合的所有 value。 private static final Object PRESENT = new Object(); // 包访问权限的构造器,以指定的 NavigableMap 对象创建 Set 集合 TreeSet(NavigableMap
m) { this.m = m; } public TreeSet() // ① { // 以自然排序方式创建一个新的 TreeMap, // 根据该 TreeSet 创建一个 TreeSet, // 使用该 TreeMap 的 key 来保存 Set 集合的元素 this(new TreeMap
()); } public TreeSet(Comparator
comparator) // ② { // 以定制排序方式创建一个新的 TreeMap, // 根据该 TreeSet 创建一个 TreeSet, // 使用该 TreeMap 的 key 来保存 Set 集合的元素 this(new TreeMap
(comparator)); } public TreeSet(Collection
c) { // 调用①号构造器创建一个 TreeSet,底层以 TreeMap 保存集合元素 this(); // 向 TreeSet 中添加 Collection 集合 c 里的所有元素 addAll(c); } public TreeSet(SortedSet
s) { // 调用②号构造器创建一个 TreeSet,底层以 TreeMap 保存集合元素 this(s.comparator()); // 向 TreeSet 中添加 SortedSet 集合 s 里的所有元素 addAll(s); } //TreeSet 的其他方法都只是直接调用 TreeMap 的方法来提供实现 ... public boolean addAll(Collection
c) { if (m.size() == 0 && c.size() > 0 && c instanceof SortedSet && m instanceof TreeMap) { // 把 c 集合强制转换为 SortedSet 集合 SortedSet
set = (SortedSet
) c; // 把 m 集合强制转换为 TreeMap 集合 TreeMap
map = (TreeMap
) m; Comparator
cc = (Comparator
) set.comparator(); Comparator
mc = map.comparator(); // 如果 cc 和 mc 两个 Comparator 相等 if (cc == mc || (cc != null && cc.equals(mc))) { // 把 Collection 中所有元素添加成 TreeMap 集合的 key map.addAllForTreeSet(set, PRESENT); return true; } } // 直接调用父类的 addAll() 方法来实现 return super.addAll(c); } ... }

 

转载于:https://www.cnblogs.com/leetcode/p/3191967.html

你可能感兴趣的文章
路由器ospf动态路由配置
查看>>
zabbix监控安装与配置
查看>>
python 异常
查看>>
last_insert_id()获取mysql最后一条记录ID
查看>>
可执行程序找不到lib库地址的处理方法
查看>>
bash数组
查看>>
Richard M. Stallman 给《自由开源软件本地化》写的前言
查看>>
oracle数据库密码过期报错
查看>>
修改mysql数据库的默认编码方式 .
查看>>
zip
查看>>
How to recover from root.sh on 11.2 Grid Infrastructure Failed
查看>>
rhel6下安装配置Squid过程
查看>>
《树莓派开发实战(第2版)》——1.1 选择树莓派型号
查看>>
在 Linux 下使用 fdisk 扩展分区容量
查看>>
结合AlphaGo算法和大数据的量化基本面分析法探讨
查看>>
如何在 Ubuntu Linux 16.04 LTS 中使用多个连接加速 apt-get/apt
查看>>
《OpenACC并行编程实战》—— 导读
查看>>
机器学习:用初等数学解读逻辑回归
查看>>
如何在 Ubuntu 中管理和使用逻辑卷管理 LVM
查看>>
Oracle原厂老兵:从负面案例看Hint的最佳使用方式
查看>>